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Abstract
The Klein paradox is one of the cornerstones in the development of quantum
mechanics, and its consequences were used in various branches of physics,
ranging from elementary particles to solid state. Yet its mathematical derivation
is questionable in a number of steps, resulting in the wrong solution of Dirac
equation. In this paper, the paradox is analysed in more detail, and its
mathematical content is emphasized in order to show that in the study of extreme
conditions of matter simple arguments may result in erroneous predictions.

PACS numbers: 03.65.Sq, 11.80.−m

1. Introduction

The effect that is known as the Klein paradox [1, 2]1 is one of the cornerstones in the
development of (relativistic) quantum mechanics. It resulted from the analysis of Dirac
equation for a particle that is subject to a one-dimensional impulsive repulsive force, and the
epithet ‘paradox’ was given because the solution was in discord with anything that the intuition
would have expected. Namely, the essence of the paradox is that if the force is of sufficient
strength, or equivalently the potential step that represents it is sufficiently high, a particle is not
reflected from its source, as one would expect. In fact in the limit when the force is infinitely
repulsive the probability for no reflection is not zero. Not only that, but the probability current
that gets transmitted is negative whilst that of the reflected is larger than the probability current
of the incoming particle. It appears as if more current is reflected than its source provides (the
incoming probability current). The intuition would have required to reexamine the analysis
because of this ‘non-physical’ result, but this did not happen, and in order to learn why it is very
instructive to learn the historic circumstances. The history of that period was nicely depicted
by Pais [3], where all dilemmas of that period are put into a condensed form. It all started
with the Dirac equation in 1928, which could not be solved without introducing the ‘positive
and negative’ energy states. The ‘negative energy’ states could not be dismissed because they

1 For a more educational presentation of the Klein paradox see the video titled: the Klein Paradox 1, 2 at the web
address http://mediasite.oddl.fsu.edu/mediasite/Catalog/Front.aspx?cid=3bd4c40c-e410-4ba4-8594-5b9891cfeefd.
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were needed for the correct solution of relativistic dynamics. The symmetry arguments were
then used to show that the two states in fact represent solutions for the ‘negative and positive’
charges. In the history of physics this is considered as the birth of idea of the positron2. Klein
published his analysis in 1929, when discussion about the physical meaning of the two states
was getting momentum, and so it was natural to put his results into that context. Coupled with
already prevailing philosophy that when considering dynamics of atoms one should forsake
classical intuition, the paradox of Klein was accepted as the evidence of mixing the two states.
The fact that the reflected current has larger value than the incoming, the argument went, is
the evidence of particles being created whilst the negative current is the evidence of creation
of particles with the opposite charge. Today this explanation is the bases for the argument
that merging relativity and quantum dynamics is not possible without quantizing fields [4].
Namely, the currents for ‘charges’ and ‘anti-charges’ have continuous values, thus implying
that they could take any value, which contradicts the evidence that they have discrete values.
Discovery of positron in 1931 was therefore the proof that Klein result was not a paradox but
evidence of a real effect, although needed quantum field theory. Pais (p 319) summarized it
nicely as ‘. . . the prediction and subsequent discovery of the positron had eliminated many of
the problems and paradoxes of the late twenties concerning the Dirac equation including the
Klein paradox’.

By accepting the Klein paradox and its interpretation one must be contented with its
consequences. One of them is that in the presence of a very strong force (large potential) there
is spontaneous creation of particle–antiparticle pairs, and the other is that a particle cannot be
confined within a potential well with very high walls. The first was essentially the basis for
predicting that in the presence of strong gravitational field, near the event horizon of a black
hole, there is spontaneous emission of particle–antiparticle pairs thus leading to its instability
[5, 6]. The other consequence causes difficulties in attempting to formulate a potential-like
model, of the MIT bag model kind, for the confinement of quarks [7]. Experimental evidence
is that individual quarks are not observed, therefore the potential well that contains them
should have (nearly) infinite walls, if the non-relativistic arguments are used. According to
the paradox, however, such a potential well cannot be modelled because it does not support
bound states. The problem was circumvented by postulating the so called Lorentz scalar
potential [8, 9], whose essential feature is to modify the mass term in the Dirac equation and
not the energy operator (time derivative). The things get even more complicated when more
advanced potential models are used, such as the one with a barrier. One expects resonances
in this case; however, the analysis produces rather disturbing result that the outgoing current
increases without limits [10, 11]. The predictions of the paradox are not only limited to the
relativistic processes, recently there are suggestions that it could play important role in solid
state [12, 13] although the systems involved are not relativistic.

More extensive criticism of the Klein paradox will be made in this paper, but few brief
comments here are appropriate. First, there is the question of initial conditions which are used
in the derivation of the Klein paradox. It should be assumed for a particle to be initially away
from the source of the impulsive force, whilst in describing the Klein paradox the stationary
states are used, which are delocalized over the whole space. This is a standard approach to
the analysis of scattering problems, taken over from the non-relativistic theory, that in many
circumstances could be very misleading. In particular this is evident in the next step, time
propagation of the solution, which is in a form of an integral over the energy (momentum)
variable. Solution must obey a fundamental condition, the causality requirement, which states

2 Originally Dirac thought that solutions for the negative charge is that for the electron and for the positive it is for
the proton. It was later in 1931 that instead of the proton the positron was postulated, and in the same year it was
discovered.
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Figure 1. Step potential.

that no part of the probability density could move faster than the speed of light. This means
that if the probability density is initially strictly localized within a certain interval then it is
also so at any later time, but the end points move at the speed of light. This requirement could
only be fulfilled if the integrand is an analytic function, which requires careful definition of
the relationship between the energy and momentum variables. However, in the analysis with
the stationary solutions this observation is not self-evident, and in particular it is not clear
how to implement the causality requirement. As it will be shown, the implementation of this
requirement drastically changes the conclusions of the Klein analysis.

In this paper the derivation of the Klein paradox is critically reviewed, and it is shown
that it results from the oversimplified approach to solving relativistic quantum problems, in
particular the Dirac equation. In a proper analysis one derives a solution that is in accord with
what one would expect from the intuition, with slight modifications that are appropriate for
relativistic dynamics. This in particular means that very high potential barriers indeed form
an insurmountable obstacle for a particle.

2. Dirac equation

2.1. One-dimensional solution

Dirac equation in the convenient units and in one dimension is

i∂tF = −i∂zG + V F + F, i∂tG = −i∂zF + V G − G (1)

and by writing the solution as

F(z, t) =
∫ ∞

−∞
de A(e)f (z, e) e−ite, G(z, t) =

∫ ∞

−∞
de A(e)g(z, e) e−ite (2)

the equation for the stationary solution f is

∂2
z f +

1

e − V + 1
(∂zV ) (∂zf ) = −[(e − V )2 − 1]f (3)

and

g = −i
∂zf

e − V + 1
. (4)

The simplest example is a step potential, which is shown in figure 1 by the solid line, and its
limiting form that is commonly used in the analysis leading to the Klein paradox is shown
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by the broken line. Initial conditions for the functions F(z, t) and G(z, t) are defined in the
space z < 0, where the stationary solution f is given in terms of the momentum variable
p = √

e2 − 1. This implies that in the integrals in equations (2) the energy variable should
not take values |e| < 1 because the momentum variable is then imaginary. Therefore to
exclude this interval from analysis the integrals should be reformulated in terms of the
momentum variable, and because of the arbitrariness in the sign between p and e the amplitude
F is

F(z, t) =
∫ ∞

−∞
dp A+(p)f +(z, p) e−ite +

∫ ∞

−∞
dp A−(p)f −(z, p) eite; e > 0 (5)

and similarly the amplitude G is

G(z, t) = −i
∫ ∞

−∞
dp A+(p)

∂zf
+(z, p)

e − V + 1
e−ite − i

∫ ∞

−∞
dp A−(p)

∂zf
−(z, p)

−e − V + 1
eite, (6)

where the superscript indicates the sign of e, e.g. f −(z, e) = f (z,−e).
An important feature of the step potential is that if V0 is sufficiently large then there is a

point z = zs (shown in figure 1) at which (for more details see [14])

e − V (zs) + 1 = 0 (7)

and in its vicinity equation (3) approximates as

d2
zf = 1

z − zs

dzf

with the solution

f = a1 + a2 (z − zs)
2 . (8)

It could be shown that a1 is arbitrary (the proof is relatively straightforward and it is not
elaborated here), which means that it is always possible to find a solution of equation (3) that
is zero at the barrier by requiring

a1 = 0.

As a result of this choice there is no flow of probability across the point z = zs . This finding
also applies in the extreme case of a step potential (impulsive force), shown by the broken line
in figure 1, when zs coincides with the position of the step.

Formal solution f for the (impulsive) step potential is

f ±(z, p) =
{

eipz + a± e−ipz; z < 0

b± eiP ±z; z > 0
(9)

and g is

g±(z, p) =




p

1 ± e
(eipz − a± e−ipz); z < 0

P ±

1 ± e + V0
b± eiP ±z; z > 0

g = −i
∂zf

e − V0 + 1
,

where

P ± = [(±e − V0)
2 − 1]1/2,

which anticipates that initially the particle is localized in the space z < 0 and moves towards
the step. In the space z > 0 there is only the transmitted amplitude, where by analogy with
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the non-relativistic scattering it is assumed that eiPz represents the wave that propagates in the
direction z → ∞. The solution does not take into account that at z = zs it has the form (8),
which, strictly speaking, should be included. However, at this stage the derivation follows the
standard treatment, in which case the coefficients are

a± = p (1 − V0 ± e) − P ±(1 ± e)

p(1 − V0 ± e) + P ±(1 ± e)
b± = 2p (1 − V0 ± e)

p (1 − V0 ± e) + P ± (1 ± e)
, (10)

which are normalized as

|a±|2 +
P ±(1 ± e)

(1 ± e − V0)p
|b±|2 = 1. (11)

The energy variable is defined as

e(p) = (p2 + 1)1/2.

The use of stationary solutions (9) in analysis of dynamics of a particle is very dangerous
without knowing their precise analytic properties as the functions of the complex momentum
variable p. These are not simple because f ±(z, p) are explicitly dependent on two important
variables, e(p) and P ±(p), which define three pairs of square-root branch points in the p
plane. One pair is p1,2 = ±i and the other two are the solutions of the equation

P +(p) = 0,

which are given by (throughout the analysis it is assumed that V0 > 2)

p3 =
√

V0(V0 − 2), p4 =
√

V0(V0 + 2)

p5 = −
√

V0(V0 − 2), p6 = −
√

V0(V0 + 2).

The momentum function P −(p) does not have roots, and hence it is not a source of the branch
points. In order to make functions f ±(z, p) analytic in the plane that contains these branch
points one must define Riemann cuts that connect them, however, the procedure is not unique.
For example, either one cut joins the points p1,2 or two cuts are defined along the intervals
(i, i∞) and (−i,−i∞). Physical arguments determine their choice.

The coefficients A± in solutions (5) and (6) are determined from their initial values F0

and G0, and under assumption that at t = 0 they are localized entirely in the space z < 0 one
gets

A±(p) = 1

4π

∫ ∞

−∞
dz

[
±1 ± e

e
F0(z) ± p

e
G0(z)

]
e−ipz. (12)

2.2. Analytic structure of the solution for the Klein paradox

In the standard treatment of scattering of a particle from the step potential in figure 1 the
momentum variable p is implicitly assumed to have positive values, but its range of definition
should also include the negative values. The physical argument for this is simple. If any
physically relevant information about the dynamics of a particle is required then the initial
condition must assume that the particle is strictly localized within a certain interval outside
the reach of the force. However, by the rules of quantum dynamics this implies that the
momentum variable must extend over the whole available space, which also includes the
negative values. Extension to the negative values is not an easily implemented task, because it
directly reflects on the properties of the solutions f ±(z, p). The problem lies in the fact that
these functions are not explicitly dependent on p but through the momentum functions P ±(p)
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and e(p). Superficially all three functions are symmetric with respect to reflection p → −p,
but on closer examination this is not the case.

One starts by analysing the analytic properties of P +(p), which in the standard treatment
gets the values for real p

P +(p) =




|P +|; p > p4

i|P +|; p3 < p < p4

|P +|; p5 < p < p3

i|P +|; p6 < p < p5

−|P +|; p < p6,

(13)

where its definition for negative p is anticipated from physical arguments: the finiteness of
the probability amplitude and the direction of motion for large |p|. Already on this simple
level there is inconsistency with the definition of this momentum function. If it changes the
sign when p > p4 goes to p < p6, why it should not when 0 < p < p3 goes into p5 <

p < 0? Enforcing the change of sign in the latter case is not simple because that could
only happen if P +(p) is zero for p = 0. All other possibilities to change the sign encounter
obstacles that result in the non-physical solutions (their detailed investigation is not of relevance
here). However, this is not the biggest problem that one encounters with the definition of the
momentum function (13). Its sign for p > p4 is determined from the physical argument
that in the space z > 0 the solution f +(p) represents the wave that propagates away from
the potential. By the same argument the sign of P +(p) in the interval 0 < p < p3 is also
chosen positive, but this is not correct. Indeed if p � V0 the limit of P +(p) is p and could
be chosen positive to represent the physical solution. On the other hand, in the interval in
question V0 > p and in the limit of very large V0 the function P +(p) has the estimate

P +(p) ≈ V0 − e(p) ≈ V0 − p (14)

and in the space z > 0 the solution f +(p) represents motion of the particle towards the
potential. This is not the only problem, but if the positive sign of P +(p) is retained then one
encounters additional problem in the definition of the initial conditions. It could be shown, but
not elaborated in details, that if initially the particle has the average momentum p0 � V0 and
the amplitudes A±(p) are calculated from (12) then besides reproducing correctly their values
F0 and G0 in the space z < 0 one gets additional, ‘ghost’, functions in the space z > 0. These
‘ghost’ functions move towards the potential step, resulting in an additional contribution in
the probability current in the space z < 0 once they reach the point z = 0. Combining the
two observations one puts into doubt the results of standard analysis and therefore the Klein
paradox, yet it is too early to say that it could be dismissed as non-physical. In order to do
that one needs to find mathematically correct alternative to the previous analysis.

In the complex p plane the table of values (13) is reproduced by a path that is shown
in figure 2(a) by the broken line. The thick lines represent the Riemann cuts between two
parallel complex p planes, therefore the path for Re(p) < p3 is in the lower one. Going
into the complex p plane is not only of superficial interest, but required if one is to get some
general properties of the solution for dynamics, which is summarized in the integrals (5) and
(6). In particular, a very important property to show is that by integrating along such a path the
causality principle is not violated. This principle requires that if one chooses initial probability
amplitude that is strictly zero outside certain interval in space z < 0 then at any later time
it is also zero outside certain interval, where the boundaries of the probability amplitude do
not move faster than the speed of light. In general, this is shown if for the parameters that
violate this principle the integration path could be distorted without acquiring new values into
far upper or lower half complex p plane. Along such a path the integrand should be zero. For
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Figure 2. Riemann surface in the standard analysis of the Klein paradox (a) together with the
integration path (broken line) for calculating probability amplitude. Corresponding modules of the
reflection (solid line) and transmission (broken line) amplitudes are shown (b).

the path in figure 2(a) this is not possible because it cannot be distorted in neither halves of
the plane without returning to the real axes where it crosses from one Riemann plane into the
other.

The appropriate modules of the coefficients a+(p) and b+(p) are shown in figure 2(b),
where the intervals in figure 2(a) are not indicated but noted as the flat line in |a+(p)|. In
the interval 0 < p < p3 these modules increase without bounds when V0 → ∞, which is
interpreted as creation of the particle–antiparticle pairs.

3. Klein paradox reexamined

There are two aspects of the Klein paradox that are crucial for its understanding: (a) proper
analysis of the analytic structure of the integrand in solutions (5) and (6), and (b) inspecting
whether it is possible to prevent the flow of probability across the step when the potential step
is very high. Each of these aspects is important in its own way, but only together they give the
answer to the question of whether there is a paradox or not.

3.1. Analytic structure of integrands

As it was shown in the previous section one of the greatest obstacles in the standard treatment
of the Klein paradox comes from the wrong sign of P +(p) in the interval 0 < p < p3, as
given in equation (14), with all the consequences that are deduced from that. One could also
make criticism of the ‘non-physical’ values of the coefficients a+(p) and b+(p) in the same
interval, but because there is already an ‘interpretation’ of this feature further discussion of
it is omitted at this stage. The possible remedy is to assume that P +(p) has negative sign in
the interval p5 < p < p3, but that does not solve the problems that were indicated earlier on,
except that the ‘ghost’ solution is no longer present. A radically new step is required, and this
is to use different Riemann cuts in the complex p plane. For those that connect p3 with p4

and p5 with p6 there is no alternative and the only option is to define the cut that connects the
points p1 with p2. In this case, the new complex p plane is shown in figure 3(a), where the
path along which P(p) is defined goes above the branch point p2. The path now scans all
the values of e(p) as required by the transformation from equations (2) to equations (5) and
(6), which was dismissed in the previous analysis with the argument that along the interval
from p = 0 to p = i = p2 the solution f (z, p) is not physical. As it turns out that although
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this portion of the path is formally included in the integrals its contribution in the solutions is
zero. In fact, the inclusion of the path has nothing to do with its contribution in the solution,
instead it is there for entirely different reason. By going around the branch point p2 the sign
of e(p) changes, which means that P +(p) becomes P −(p) (shown in figure 3(a)) and hence
in the space Re(p) < 0 there are no cuts. The table of values for P(p) in this case is

P +(p) =




|P +|; p > p4

i|P +|; p3 < p < p4

−|P +|; 0 < p < p3

−|P −|; p < 0.

Likewise P −(p) has the values on the real axes

P −(p) =




|P −|; p > 0
|P +|; p5 < p < 0
i|P +|; p6 < p < p5

−i|P +|; p < p6.

An important feature of these integration paths is that along them the modules of the coefficients
a± and b± has ‘physically acceptable’ values, as shown in figure 3(b) for P +(p). This means
that their modules are limited within the bounds of unity; however, they still have a ‘non-
acceptable’ feature that for V0 → ∞ the reflection coefficient is zero and the transmission is
unity.

Another equally important feature of this definition of the Riemann plane is that the
integration path could be distorted into its far upper part thus enabling to satisfy the causality
principle. As it was argued in the previous section this is not possible in the standard treatment,
because the integration path must always return to the vicinity of the real p axes.

3.2. Implementation of boundary condition

Most of the problems are solved in the plane with the cuts that are shown in figure 3(a); the
path is on a single plane of the Riemann surface and it is easily distorted into the upper half
plane, the propagation of the solution in the space z > 0 reverses direction when p > 0 goes
to p < 0 and the modules of the coefficients a(p) and b(p) are within the bounds that are
acceptable, as shown in figure 3(b). The only remaining obstacle to finding the correct solution
is the wrong limit of the coefficients a+(p) and b+(p) when V0 → ∞, the same problem as
in figure 3(b). In other words, for the infinite barrier the particle goes through it as if it is not
present. One consequence of this would be that a particle could not be contained in a potential
well with infinitely high walls, say by a harmonic force, because it would leak out as if it is not
present. Therefore, it is essential to make the final step to resolve this obstacle, and the basis
is the Riemann plane in figure 3(a). In fact, there are two Riemann planes, the mentioned one
and the other that starts with the function P −(p) in the space p > 0. The latter is a mirror
image with respect to the imaginary p axes of that shown in figure 3(a). The existence of two
Riemann planes means that solution (5) is again a sum of two integrals, each one in a separate
plane. The solution is therefore

F(z, t) =
∫

1
dp A1(p)f1(z, p) e−ite +

∫
2

dp A2(p)f2(z, p) eite,

where the indices 1 and 2 indicate the path in the two Riemann planes. Similarly, one defines
the solution for the amplitude G.
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Figure 3. Riemann surface that correctly reproduces the essential requirements on the probability
amplitude (a) together with the integration path (broken line) for calculating it. Corresponding
modules of the reflection (solid line) and transmission (broken line) amplitudes are shown (b).

The stationary functions f1,2(z, p) are defined in terms of the stationary function f (z, p)

by taking into account the value of e(p) and P(p) along the path in the complex p plane,
the one that is shown in figure 3(a). However, as it was shown in section 2 when condition
(7) is satisfied then solution f (z, p) has the functional form (8) around z = 0, for example,
the function f1(z, p) in the intervals p > 0 and p ∈ (0, i)±. The important feature is that
in the interval of p where the condition is satisfied also coincides with the interval of the
‘non-physical’ character of the function f (z, p), of the sort that was discussed in figure 3(b).
Therefore, by imposing the boundary condition f (0, p) = 0 in these intervals this character of
the solution disappears, and f (z, p) becomes perfectly acceptable ‘physical’ solution. Thus
in the space z < 0 the two solutions on the real and imaginary (in the interval between 0
and p2) axes are

f1(z, p) =




eipz + a(p) e−ipz; p > 0, e(p) > 0, P (p) = P +(p)

eipz − e−ipz; p3 > p > 0, e(p) > 0, P (p) = P +(p)

eipz − e−ipz; p ∈ (0, i)+, e(p) > 0, P (p) = P +(p+)

eipz − e−ipz; p ∈ (0, i)−, e(p) < 0, P (p) = −P −(p+)

eipz + a(p) e−ipz; p < 0, e(p) < 0, P (p) = −P −(−p)

and

f2(z, p) =




eipz + a(p) e−ipz; p > 0, e(p) > 0, P (p) = P −(p)

eipz − e−ipz; p ∈ (0, i)+, e(p) > 0, P (p) = P −(p+)

eipz − e−ipz; p ∈ (0, i)−, e(p) < 0, P (p) = −P +(p+)

eipz − e−ipz; p5 < p < 0, e(p) < 0, P (p) = −P +(−p)

eipz + a(p) e−ipz; p < 0, e(p) < 0, P (p) = −P +∗(−p),

where the superscripts ± of p indicate infinitesimal positive or negative real contribution. In
the space z > 0 these solutions are

f1(z, p) =




b(p) eiPz; p > 0, e(p) > 0, P (p) = P +(p)

0; p3 > p > 0, e(p) > 0, P (p) = P +(p)

0; p ∈ (0, i)+, e(p) > 0, P (p) = P +(p+)

0; p ∈ (0, i)−, e(p) < 0, P (p) = −P −(p+)

b(p) eiPz; p < 0, e(p) < 0, P (p) = −P −(−p)

(15)
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and

f2(z, p) =




b(p) eiPz; p > 0, e(p) > 0, P (p) = P −(p)

0; p ∈ (0, i)+, e(p) > 0, P (p) = P −(p+)

0; p ∈ (0, i)−, e(p) < 0, P (p) = −P +(p+)

0; p5 < p < 0, e(p) < 0, P (p) = −P +(−p)

b(p) eiPz; p < 0, e(p) < 0, P (p) = −P +∗(−p),

(16)

where the zero value of the functions was chosen because across the point z = 0 there is no
flow of the probability. What the solution now says is that in the intervals where V0 is much
larger than e(p), and not necessarily infinite, the particle is totally reflected from the potential,
but otherwise it behaves as expected from the standard non-relativistic treatment.

Typical interval of p, which is assumed in the following analysis, in which the Klein
paradox is described is easily identified: this is where p is positive and for which e(p) is
much smaller than V0. If the amplitudes A1,2(p) are negligible outside this interval then
the selected stationary solutions f1,2(z, p) produce probability density that never crosses
into the space z > 0. Strictly speaking, however, solutions for the functions f1,2(z, p) are
not zero in the space z > 0, contrary to the suggested values in equations (15) and (16).
Furthermore, the amplitude F(z, t) is only one component in the probability density, the
final object of the calculation. The other component is the G(z, t) amplitude, given by
equation (6) but appropriately formulated in terms of the functions g1,2(z, p) that are derived
from the functions f1,2(z, p) through the relationship (4). At the turning point z = zs = 0 the
functions f1,2(z, p) are zero, by the choice of the boundary condition, but g1,2(z, p) are not
zero, which implies that the object of the previous exercises is nullified. Namely, the object
was to select the solution that gives zero for the probability density

P(z, t) = |F(z, t)|2 + |G(z, t)|2
in the space z = zs > 0 (when the barrier is very high). First impression is that in order to
obtain this result one requires that g1,2(z, p) are zero at z = zs ; however, this is not the correct
criterion. Sufficient condition is that the probability current

J (z, t) = G∗(z, t)F (z, t) + F ∗(z, t)G(z, t)

is zero at z = zs , which is indeed the case. This means that if the particle is initially localized
entirely in the space z < 0, i.e. P(z, 0) = 0 for z > 0, then because there is no flow of the
probability density across the point z = zs the probability density stays zero in the space z > 0
for all times. Formally this is achieved by setting f1,2(z, p) and g1,2(z, p) to zero for z > 0,
and when p is from the appropriate interval. This is the argument behind the choice of the
values in equations (15) and (16).

There still remains a problem, it is connected with the function f2(z, p), and hence with
g2(z, p) as well. In the space z > 0 and for p > 0 it is determined by the momentum function
P −(p), as shown in equation (16). This means that in this space the potential barrier is in
fact treated as the potential well, because the change in the sign of e is equivalent as the
replacement V0 → −V0, but keeping positive e. It would appear that for this component the
probability density gets through the barrier, and there is probability of finding particle where
it should not be. In short, one obtains the Klein paradox again. However, it should be recalled
that in the integral that propagates the ‘negative energy’ component of the amplitude F(z, t)

there is the exponential exp[ie(p)t], which causes this component to move in the opposite
direction then anticipated by the sign of p. Therefore, when the initial state is set up then in the
space z < 0 the component with exp(ipz) propagates towards z → −∞, away from the step.
The component with exp(−ipz) has no contribution in the space z < 0, which is the same as
with the component exp[iP −(p)z] in the space z > 0. This means that although formally the
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‘negative’ energy component treats the barrier as a well, implying that part of the probability
amplitude might cross into the space z > 0, this never happens because this component moves
away from the barrier. The matter would have been different if the initial probability density
is partly in the space z < 0 and partly in z > 0.

4. Conclusion

Complete, mathematically correct, solution of the Dirac equation for a one-dimensional step
potential was obtained that conforms to the ‘intuitive feel’ of what it should be. It could
be therefore argued that it invalidates the Klein paradox, which is only an artefact of the
incomplete mathematical analysis of the solution of the Dirac equation. However, one could
argue that the solution in this paper was gauged towards that goal, but the fact remains that in
its derivation all the objections to the standard derivation were resolved. As it was shown, if
the standard derivation is accepted then many mathematical problems are encountered. These
problems could not be ignored if some general requirements are imposed, but historically
they were because the solution represented particle–antiparticle pair creation. Despite several
wave packet analysis of the Klein paradox in the past [15] their goal was not to invalidate
it, which could have been done, instead the aim was to reconfirm it and show how the
particle–antiparticle pairs are created. The ‘intuitive feel’ that this is the correct interpretation
predetermined the solution.
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